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Abstract— A new general correlation for forced convection boiling has been developed with the aid of a large
data bank. This data bank consists of over 4300 data points for water, refrigerants and ethylene glycol, covering
seven fluids and 28 authors, mostly for saturated boiling in vertical and horizontal tubes, but with significant
information also for subcooled boiling and for annuli. The new correlation is simpler to apply and overall gives
a closer fit to the data than existing correlations. The mean deviation between the calculated and measured
boiling heat transfer coefficient is 21.4% for saturated boiling and 25.0% for subcooled boiling.

INTRODUCTION

A LARGE number of correlations have been proposed
for flow boiling [1-16]; however, many of these are
restricted to one fluid. General correlations have been
proposed by refs. [1-4] for saturated boiling, and by
refs. [12-16] for subcooled boiling. However, it is
difficult to find any correlation or procedure for
calculating the boiling heat transfer coefficient that
covers the whole range from subcooled to saturated
boiling.

An early general correlation for saturated boiling,
still widely quoted, was that of Chen [1] who divided
the heat transfer into two parts: a microconvective
(nucleate boiling) contribution based on Foster and
Zuber’s pool boiling equation [17]; and a macrocon-
vective (non-boiling forced convection) contribution
based on the single-phase (liquid only) Dittus—Boelter
equation [18]. These were combined to give an overall
heat transfer coefficient :

hlp = fhl+Shpool' (1)

The factor f (> 1) reflects the much higher velocities
and hence forced convection heat transfer in the two-
phase flow compared to the single-phase, liquid-only
flow. The factor f was correlated against the Martinelli
parameter. The factor s (suppression factor, <1) re-
flects the lower effective superheat available in
forced convection as opposed to pool boiling, due
to the thinner boundary layer. The suppression
factor was correlated against a two-phase Reynolds
number. In the original papers f and s are presented as
graphs, but ref. [19] has fitted equations to the graphs.

Asmightreasonably beexpected in view of its age this
correlation has to some extent been superseded by
more recent ones.

A more recent correlation for saturated boiling, that
gives a good fit to a large body of data, is that of Shah
[2] (much the same correlation was earlier given in the
form of graphs rather than equations [20]). Again two
distinct mechanisms are considered to apply—nucleate
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boiling and forced convection—but instead of adding
the two contributions together the larger of the two
calculated heat transfer coefficients is chosen. A feature
of the Shah correlation is that the boiling number, Bo,
plays an important part. Use of the boiling number in
correlations goes back at least as far as Mumm [6].

Since afew general correlations are already available,
with one at least giving good results, some justification
is required for proposing a new one. It would be
desirable for any new correlation to be tested against a
data bank at least as large as those used previously ; for
it to be simple to apply (simple equations, not requiring
obscure property values); for it to extend to subcooled
as well as saturated boiling;; for it to apply to tubes and
annuli for both vertical and horizontal flow ; and for it
to be a close fit to the data. The correlation proposed in
this paper satisfies all these requirements.

THE DATA BANK

An attempt has been made to collect datafroma wide
range of sources taken under a wide range of conditions.
The data points taken from the literature consist of the
experimentally measured values of heat transfer
coefficient and wall temperature as a function of
pressure (or saturation temperature), mass flux, heat
flux and quality. For subcooled boiling, the bulk
temperature (or subcooling) is recorded in place of the
quality. Theinlet length has also been recorded, but has
not been used in the present study.

In Table 1 a complete list has been given, including
the number of data points and the range of each of the
parameters covered. So far as possible all the data from
a given source has been used, to avoid any subjectivity
in choosing just a sample. A possible disadvantage of
this procedure is that the data base becomes unduly
weighted towards just one or two sources that
happened to report a very large number of readings. In
the present case the largest sources are refs. [6] (419
points for water) and [32] (593 points for R11). Since
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NOMENCLATURE
Bo boiling number Greek symbols
C, specific heat [J kg™ K™'] x  thermal diffusivity [m?s™']
d  tube diameter [m] /. latent heat [Tkg 1]
E enchancement factor p  density [kg m~3]
f  Chen’s empirical F function, (Re,,/Re,)*® o surface tension [N m™ ']
Fr Froude number, G%/(p?gd) ¢ dynamic viscosity [Nsm~2(kgm™'s™)].
g  acceleration of gravity [m s~ 2]
G mass flux [kgm ?s™ 1] Subscripts
h  heat transfer coefficient [W m~2 K 1] b bulk
k  thermal conductivity [Wm~! K™ !] ¢ critical
M molecular weight cal calculated
P pressure [N m™2] e equivalent
Pr Prandtl number exp experimental
q heat flux [Wm™?] 1 liquid
Re Reynolds number pool pool boiling
Re, liquid Reynolds number, G(1 —x)d/u, r reduced
S suppression factor S saturation
T temperature [K] tp two-phase
x  quality v vapour
X, Martinelli parameter. w  wall

each of these sources covered a reasonable range of the
parameters, and in the context of 3693 saturated boiling
data points in total, the influence of these two sources is
not excessive.

CONSTRUCTION OF THE CORRELATION
The basic form of the correlation used is:
hy = Ehi+ Shpoor )

but the precise method of calculating the various terms
has evolved through a number of stages. h,, right from
the beginning, has been given by the Dittus—Boelter
equation for liquid only flowing in the duct, i.e.

hy = 0.023 Rel® Pro*k,/d. 3)

However, in two-phase fiow, even for quite modest
vapour qualities, the velocities are higher, the void
fraction is high and the boundary layer next to the heat
transfer surface is thin. The heat transfer is
consequently increased by an enhancement factor E
well above the level for a single-phase liquid flow (of the
same mass flux). This effect is clearly going to depend on
the quality x and on the vapour to liquid density ratio
p/p1-and it has in fact been common practice for a long
time to correlate both void fraction and heat transfer
coefficients in two phase flows in terms of the Martinelli
parameter :

. 1—x\0? p_vo.s W 0.1 @
TN x Py w)

There does not appear to be any good reason to change
this aspect of the correlation.
It is not just the high axial velocities that are

significant in disturbing the boundary layer next to the
heat transfer surface and improving the heat transfer.
The generation of vapour itself in the boiling process
results in significant disturbance of the layer and
improved heat transfer. A dimensionless measure of
how important this effect may be is given by the boiling
number :

q

Bo=——
°=7%G

%)
being the ratio of mass flux perpendicular to the wall
due to boiling to the total (axial) mass flux.

Consequently it should be possible to write the
enhancement factor as:

E = f(X,, Bo). -(6)

The pool boiling term in equation (2) is multiplied by
a suppression factor S. This takes account of the fact
that the boundary layer of superheated liquid in which
the vapour bubble grows is thinner in forced
convection. The extent of this suppression will be
controlled by the effectiveness of the forced convection
heat transfer, that is by the two-phase Reynolds
number Re,, = E” Re, (this form of expression for the
two-phase Reynolds number is suggested in [1]).

Iteration to find the unknown E and S factors

It became clear at an early stage that the dominant
term in equation (2) was the first one, so even an
approximate method of finding S and h,,, might give
acceptable results in calculating E from the ex-
perimental data. Accordingly, Chen’s equations for S
and h,,,; were used to estimate E from:

E= (hexp - Shpool)/hl (7)
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where h,,, is the experimental boiling heat transfer
coefficient.

Values of the fluid properties were obtained from a
number of sources. For water and R22, equations
supplied by the National Engineering Laboratory,
Glasgow, were used. For other fluids in some cases
equations for the properties were found in the literature
[8, 10, 217, in other cases equations were fitted to
literature property data as part of this project.

Based on these results a first estimate of the function
S(X,, Bo) in equation (6) was obtained. With this
equation for E it was possible to go through the data
again to obtain a better estimate of S. Also a number of
literature expressions for h,,, were investigated, the
best being that proposed by Cooper [22]:

Byt = 55 P&12(—log, o P,)~035 M3 4067 (g)

(assuming that the roughness of tube is 1 ym).

Inthis way an equation for the suppression factorasa
function of the two-phase Reynolds number was
obtained.

This procedure was repeated until there was no
significant improvement in the fit.

Up to this point no account had been taken of the
orientation of the tube. Further iterations showed that
for horizontal tubes with less than a certain critical
Froude number both E and S required modification.

THE FINAL EQUATIONS

Using all of the saturated boiling tube data available
at that time, the expressions for E and S were:

E =1+24000 Bo'-'® 4+ 1.37(1/X,,)°-8¢ 9

and

1
S= .
1+1.15x 107 5E2 Relt7

(10)

So the heat transfer coefficient in saturated boiling
may be calculated using these two expressions and the
following equations. All properties are calculated at the
saturation temperature.

hy, = Ehy+Sh o, o
hy = 0.023 Re?-® Pro-* k/d o
hpool =55 Pl(').lz(_loglo Px)_()'55 M_O'5 q°-67. (8)

If the tube is horizontal and the Froude number is less
than 0.05 then E should be multiplied by:

E2 — Fr(o.x —2Fr) (11)
and S should be multiplied by:
S, = /Fr. (12)

As the equations stand it is assumed that heat flux g is
known, in which case it is straightforward to calculate
T,,. If T, isknown then, as with many other correlations,
a degree of iteration is required.

K. E. GunGor and R. H. S. WINTERTON

Boiling in annuli
This s treated by means of an equivalent diameter d,
that depends on the width of the annular gap:

4 x flow area
for gap > 4 mm

€

~ wetted perimeter
(13)
4 x flow area

=-———— for gap < 4 mm.
heated perimeter gap

Note that in the data only one of the annulus walls was
heated.

Subcooled boiling

In subcooled boiling the driving temperature
differences for nucleate boiling and for forced
convection are different, so equation (2) is replaced by :

q = m(T, = Ty)+ Shpoo T, — T) (14)

There is no enhancement factor since there is no net
vapour generation, but the suppression factor remains
effective [calculated according to equations (9) and
(10)]. It could be argued that there should still be an
enhancement factor since there is still local vapour
generation, but this approach gave a worse fit to the
data.

TESTS OF THE VARIOUS CORRELATIONS
AGAINST THE DATA

In addition to the equations developed as part of this
study, i.e. equations (2)+5) and (8)—(14), and the Chen
and Shah correlations described in the introduction, a
number of other correlations were programmed. These
were the modified Chen correlation [3], the modified
versions of the Rohsenow, Chawla and Kutateladze
correlations proposed by Stephan and Auracher (i.e. as
the original correlations [4] but with Stephan’s pool
boiling term). Also two sets of equations that are really
intended for water only were included out of interest
because they did not appear to have been compared
with many different sources of data.

Theresults of the comparison of the correlations with
all of the saturated boiling data in the data bank, i.e.
3693 data points, is shown in Table 2. In addition, Fig. 1
shows a comparison of the data with the equations
recommended in this paper. For the purpose of drawing
this figure only every 20th point for water and every
10th point for the other liquids was used. The overall
results in Table 2 conceal of course some individual
examples of very good or very poor agreement with the
data of individual authors. For example, presumably
something of a fluke, Bjorge’s equation (which is
intended for water) correlates Lavin’s R22 data with a
mean deviation of only 7.5%. On the other hand, the
original Chen correlation gives 1899 mean deviation
with Chawla’s data for R11.

Stephan and Auracher found reasonable agreement
between their data file and the modified versions of the
Rohsenow, Kutateladze and especially Chawla
equations that they proposed, though they do not
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F1G. 1. Comparison of the equations proposed in this paper with the data.

quote any mean deviation values. In Table 2 the
agreement is not very good. The reason for this
discrepancyis not clear, though the datais not the same.
Where the same data sources were used we have
considerably more individual data points. In ref. [43] it
is shown that large discrepancies are possible if only
part of the data is used.

The two equations intended only for use with water
give, not surprisingly, poor results with refrigerants or
with data for annuli, but Mumm’s equation gives
accurate results for water in spite of its simplicity. This is
presumably because it includes a boiling number term.

Both the original Chen correlation and the later
modification [3] give poor results with refrigerants.

Only the equations developed in the present paper
and those of Shah give reasonable agreement with all of
the saturated boiling data. If a more detailed
comparison is made with data of individual authors the
disagreement (on mean deviation) does not exceed 58%,
(present study) or 65%, (Shah). The other correlations
give maximum errors, compared with data from
individual authors, of from 67% to 253%. Presumably
these large errors arise from the parameters of the data,
such as pressure, mass flux, etc., being outside the range

for which the correlation was developed. If these
correlations are used for prediction it must be accepted
that errors as large as 100% or more could occur.

In virtually all cases the predictions for annuli are
closer using the equivalent diameter given by equation
(13) instead of the usual hydraulic diameter.

For the comparison with subcooled boiling data, a
number of other correlations, specifically for subcooled
boiling, were programmed in addition. The resuits of
the comparison are shown in Table 3. The two
correlations that performed well with the saturated
boiling data give mean deviations of 35.5%; (Shah) and
25.0%, (present study). Only the Moles and Shaw
equation, which is specifically for subcooled boiling,
with 22.6%, mean deviation, is better than the equations
of the present study.

DISCUSSION

At an earlier stage the Stephan and Auracher [4]
pool boiling equation was used in place of equation (8).
It gave nearly as good results, but since the Cooper
equation is very much simpler it is the one that is
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recommended. It does not require values of surface
tension.

Only the correlation developed in this paper gives
reasonable results for both saturated and subcooled
boiling. For saturated boiling it is similar in accuracy
to the Shah correlation (but requires slightly fewer
equations). For subcooled boiling it is nearly as good as
the best of the correlations developed specifically for
this boiling regime.

The final equations [i.e.(9)and {10)] were not fitted to
all of the data currently in the data bank. The data for
subcooled boiling and boiling in annuli were not used,
but subseugently were found to be in good agreement
with the equations. Also, as a final test of the equations,
further data were found [ 10, 217 for water and two new
fluids (R114 and ethylene glycol) which were in good
agreement, giving mean deviations of 14.8-28.3%,. The
results in Table 2 refer to all the data currently in the
data bank, i.e. including this further data,

CONCLUSIONS

Flow boiling heat transfer, for saturated and
subcooled conditions, vertical and horizontal flow,
tubes and annuli, can be predicted with reasonable
accuracy by the equations given in this paper.
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UNE RELATION GENERALE POUR L’EBULLITION FORCEE DANS LES TUBES ET LES
ESPACES ANNULAIRES

Résumé— Une nouvelle formule générale pour I'ébullition en convection forcée est développée 4 I'aide d’une
grande banque de données. Celle-ci concerne 4300 points de mesures pour ['eau, les réfrigérants et 'éthyléne
glycol, couvrant sept fluides et 28 auteurs; la plupart des points pour I'ébullition saturée dans des tubes
verticaux et horizontaux, mais avec une information significative aussi pour I'ébullition sous-refroidie et pour
les espaces annulaires. La nouvelle relation est plus simple & appliquer et donne généralement une meilleure
adaptation aux données que les formules existantes. La déviation moyenne entre les coefficients de transfert
calculé et mesuré est de 21,4% pour I'ébullition saturée et de 25, pour I’ébullition sous-refroidie.

EINE ALLGEMEINGULTIGE GLEICHUNG FUR STROMUNGSSIEDEN IN ROHREN UND
RINGSPALTEN

Zusammenfassung— Unter Verwendung einer groBen Datenbank wurde eine neue allgemeingiiltige

Korrelation fiir das Sieden bei erzwungener Konvektion entwickelt. Die Datenbank enthélt iber 4300

Datenpunkte fiir Wasser, Kaltemittel und Athylenglykol. Sie beinhaltet sieben Stoffe und 28 Autoren, meist

fiir gesdttigtes Sieden und fiir Ringspalte. Die neue Korrelation ist einfacher in der Anwendung und zeigt eine

bessere Anpassung an die Daten als bestehende Korrelationen. Die mittlere Abweichung zwischen den

berechneten und gemessenen Wiarmeiibergangskoeffizienten beim Sieden betrdgt 21,48 fiir geséttigtes
Sieden und 25,0 fiir unterkiihltes Sieden.

OBOBIEHHOE COOTHOHMEHUE 1A TEIUJIOOBMEHA [TPM KUITEHHWH B TPYBAX U
KOJIBLHEBBIX KAHAJIAX

Annoranus—C HCnOIB30BAHMEM BoJBIOro 6aHKa JaAHHBIX NOJNYYEHO HOBOE 0BOGLIEHHOE COOTHOLIEHHE
ans kospduumenta TermooOMeHa NPH KHNEHHH B CMBIC/IE BBIHYXIEHHOH KOHBEeKUMH. BaHK OaHHBIX
BRIIOYAeT cabiwe 4300 OaHHBIX A71M BOIbI, XJTANATEHTOB ¥ HTHJIEH IJIIOKOJA, OXBAThIBAIOIIMX JaHHbIE 28
aBTOPOB 110 7 XEAKOCTAM B OCHOBHOM JUTH KMIICHHS HACHIICHHON XHIKOCTH B BEPTHKAJILHBIX U IODH-
3OHTaNBHBIX TpyGax, MpHYeM 3HAYHTENbHASM 4acTh MHGOPMAIHH OTHOCHTICS K KHNCHHIO HEAOTPETOH
KHOKOCTH M A KONBUEBBIX Kananos, HoBoe cooTHoweHHe Gonee NpocTo B MPHMEHCHNH H B 06ILEM
Aaet Bonee 6anskoe COBHaJACHHE C JAaHHbIMH, YEM CYIUCCTBYIOIIHE. Cpem!ee OTKJIOHEHHE MEXAY pacCin-
TAHHBIM ¥ M3MEPEHHBIM KO PHUMEHTaMH Tenn0o0MeHa IPH KHNEHHKN cocTapseT 21,4% ans kuneuus
HACBILIEHHOM XHAKOCTH H 25,0% /1% KMIIEHHS HEAOF PETOR XKHIAKOCTH.



